3.6.17 \(\int (e x)^{5/2} \sqrt {a+b x^3} (A+B x^3) \, dx\) [517]

Optimal. Leaf size=324 \[ \frac {3 a (16 A b-7 a B) e^2 \sqrt {e x} \sqrt {a+b x^3}}{320 b^2}+\frac {(16 A b-7 a B) (e x)^{7/2} \sqrt {a+b x^3}}{80 b e}+\frac {B (e x)^{7/2} \left (a+b x^3\right )^{3/2}}{8 b e}-\frac {3^{3/4} a^{5/3} (16 A b-7 a B) e^2 \sqrt {e x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{640 b^2 \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \]

[Out]

1/8*B*(e*x)^(7/2)*(b*x^3+a)^(3/2)/b/e+1/80*(16*A*b-7*B*a)*(e*x)^(7/2)*(b*x^3+a)^(1/2)/b/e+3/320*a*(16*A*b-7*B*
a)*e^2*(e*x)^(1/2)*(b*x^3+a)^(1/2)/b^2-1/640*3^(3/4)*a^(5/3)*(16*A*b-7*B*a)*e^2*(a^(1/3)+b^(1/3)*x)*((a^(1/3)+
b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)/(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))*(a^(1/3)+b^(
1/3)*x*(1+3^(1/2)))*EllipticF((1-(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2),1/
4*6^(1/2)+1/4*2^(1/2))*(e*x)^(1/2)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)
^(1/2)/b^2/(b*x^3+a)^(1/2)/(b^(1/3)*x*(a^(1/3)+b^(1/3)*x)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.23, antiderivative size = 324, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {470, 285, 327, 335, 231} \begin {gather*} -\frac {3^{3/4} a^{5/3} e^2 \sqrt {e x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} (16 A b-7 a B) F\left (\text {ArcCos}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{640 b^2 \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {3 a e^2 \sqrt {e x} \sqrt {a+b x^3} (16 A b-7 a B)}{320 b^2}+\frac {(e x)^{7/2} \sqrt {a+b x^3} (16 A b-7 a B)}{80 b e}+\frac {B (e x)^{7/2} \left (a+b x^3\right )^{3/2}}{8 b e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*x)^(5/2)*Sqrt[a + b*x^3]*(A + B*x^3),x]

[Out]

(3*a*(16*A*b - 7*a*B)*e^2*Sqrt[e*x]*Sqrt[a + b*x^3])/(320*b^2) + ((16*A*b - 7*a*B)*(e*x)^(7/2)*Sqrt[a + b*x^3]
)/(80*b*e) + (B*(e*x)^(7/2)*(a + b*x^3)^(3/2))/(8*b*e) - (3^(3/4)*a^(5/3)*(16*A*b - 7*a*B)*e^2*Sqrt[e*x]*(a^(1
/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*Ellip
ticF[ArcCos[(a^(1/3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)], (2 + Sqrt[3])/4])/(640*b
^2*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*Sqrt[a + b*x^3])

Rule 231

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[x*(s +
 r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*(
(s + r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^
2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x]

Rule 285

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Dist[a*n*(p/(m + n*p + 1)), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rubi steps

\begin {align*} \int (e x)^{5/2} \sqrt {a+b x^3} \left (A+B x^3\right ) \, dx &=\frac {B (e x)^{7/2} \left (a+b x^3\right )^{3/2}}{8 b e}-\frac {\left (-8 A b+\frac {7 a B}{2}\right ) \int (e x)^{5/2} \sqrt {a+b x^3} \, dx}{8 b}\\ &=\frac {(16 A b-7 a B) (e x)^{7/2} \sqrt {a+b x^3}}{80 b e}+\frac {B (e x)^{7/2} \left (a+b x^3\right )^{3/2}}{8 b e}+\frac {(3 a (16 A b-7 a B)) \int \frac {(e x)^{5/2}}{\sqrt {a+b x^3}} \, dx}{160 b}\\ &=\frac {3 a (16 A b-7 a B) e^2 \sqrt {e x} \sqrt {a+b x^3}}{320 b^2}+\frac {(16 A b-7 a B) (e x)^{7/2} \sqrt {a+b x^3}}{80 b e}+\frac {B (e x)^{7/2} \left (a+b x^3\right )^{3/2}}{8 b e}-\frac {\left (3 a^2 (16 A b-7 a B) e^3\right ) \int \frac {1}{\sqrt {e x} \sqrt {a+b x^3}} \, dx}{640 b^2}\\ &=\frac {3 a (16 A b-7 a B) e^2 \sqrt {e x} \sqrt {a+b x^3}}{320 b^2}+\frac {(16 A b-7 a B) (e x)^{7/2} \sqrt {a+b x^3}}{80 b e}+\frac {B (e x)^{7/2} \left (a+b x^3\right )^{3/2}}{8 b e}-\frac {\left (3 a^2 (16 A b-7 a B) e^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b x^6}{e^3}}} \, dx,x,\sqrt {e x}\right )}{320 b^2}\\ &=\frac {3 a (16 A b-7 a B) e^2 \sqrt {e x} \sqrt {a+b x^3}}{320 b^2}+\frac {(16 A b-7 a B) (e x)^{7/2} \sqrt {a+b x^3}}{80 b e}+\frac {B (e x)^{7/2} \left (a+b x^3\right )^{3/2}}{8 b e}-\frac {3^{3/4} a^{5/3} (16 A b-7 a B) e^2 \sqrt {e x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{640 b^2 \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.10, size = 112, normalized size = 0.35 \begin {gather*} \frac {e^2 \sqrt {e x} \sqrt {a+b x^3} \left (-\left (\left (a+b x^3\right ) \sqrt {1+\frac {b x^3}{a}} \left (-16 A b+7 a B-10 b B x^3\right )\right )+a (-16 A b+7 a B) \, _2F_1\left (-\frac {1}{2},\frac {1}{6};\frac {7}{6};-\frac {b x^3}{a}\right )\right )}{80 b^2 \sqrt {1+\frac {b x^3}{a}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(e*x)^(5/2)*Sqrt[a + b*x^3]*(A + B*x^3),x]

[Out]

(e^2*Sqrt[e*x]*Sqrt[a + b*x^3]*(-((a + b*x^3)*Sqrt[1 + (b*x^3)/a]*(-16*A*b + 7*a*B - 10*b*B*x^3)) + a*(-16*A*b
 + 7*a*B)*Hypergeometric2F1[-1/2, 1/6, 7/6, -((b*x^3)/a)]))/(80*b^2*Sqrt[1 + (b*x^3)/a])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.43, size = 4175, normalized size = 12.89 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^(5/2)*(B*x^3+A)*(b*x^3+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/320*e^2*(e*x)^(1/2)*(b*x^3+a)^(1/2)/b^3/(-a*b^2)^(1/3)*(96*I*A*3^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-
b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)
))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*Elliptic
F((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/
(I*3^(1/2)-3))^(1/2))*a^2*b^3*e*x^2+84*I*B*(-a*b^2)^(1/3)*3^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a
*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2
)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*
3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1
/2)-3))^(1/2))*a^3*b*e*x+96*I*A*(-a*b^2)^(2/3)*3^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)
))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/
2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*
x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/
2))*a^2*b*e-42*I*B*(-a*b^2)^(2/3)*3^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*
3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(
1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(
1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a^3*e+48*
I*A*(-a*b^2)^(1/3)*3^(1/2)*((b*x^3+a)*e*x)^(1/2)*(1/b^2*e*x*(-b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)+2*
b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3)))^(1/2)*a*b^2-42*I*B*3^(1/2)*(-(I*3^(1/2)-3
)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2
))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)
^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*
3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a^3*b^2*e*x^2-96*A*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b
^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*
((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^
(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2
)-3))^(1/2))*a^2*b^3*e*x^2+40*I*B*(-a*b^2)^(1/3)*3^(1/2)*((b*x^3+a)*e*x)^(1/2)*(1/b^2*e*x*(-b*x+(-a*b^2)^(1/3)
)*(I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3)))^(1/2)*b^3*x
^6-120*B*(-a*b^2)^(1/3)*((b*x^3+a)*e*x)^(1/2)*(1/b^2*e*x*(-b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x
+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3)))^(1/2)*b^3*x^6+42*B*(-(I*3^(1/2)-3)*x*b/(-1+I
*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-
a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1
/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1
+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a^3*b^2*e*x^2-192*I*A*(-a*b^2)^(1/3)*3^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/
2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)
^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*El
lipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(
1/2))/(I*3^(1/2)-3))^(1/2))*a^2*b^2*e*x+192*A*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*
((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^
2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I
*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-a*b
^2)^(1/3)*a^2*b^2*e*x+64*I*A*(-a*b^2)^(1/3)*3^(1/2)*((b*x^3+a)*e*x)^(1/2)*(1/b^2*e*x*(-b*x+(-a*b^2)^(1/3))*(I*
3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3)))^(1/2)*b^3*x^3-84
*B*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(
1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2
))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*
3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1...

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(5/2)*(B*x^3+A)*(b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

e^(5/2)*integrate((B*x^3 + A)*sqrt(b*x^3 + a)*x^(5/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(5/2)*(B*x^3+A)*(b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

integral((B*x^5 + A*x^2)*sqrt(b*x^3 + a)*sqrt(x)*e^(5/2), x)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 26.98, size = 97, normalized size = 0.30 \begin {gather*} \frac {A \sqrt {a} e^{\frac {5}{2}} x^{\frac {7}{2}} \Gamma \left (\frac {7}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {7}{6} \\ \frac {13}{6} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \Gamma \left (\frac {13}{6}\right )} + \frac {B \sqrt {a} e^{\frac {5}{2}} x^{\frac {13}{2}} \Gamma \left (\frac {13}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {13}{6} \\ \frac {19}{6} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \Gamma \left (\frac {19}{6}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**(5/2)*(B*x**3+A)*(b*x**3+a)**(1/2),x)

[Out]

A*sqrt(a)*e**(5/2)*x**(7/2)*gamma(7/6)*hyper((-1/2, 7/6), (13/6,), b*x**3*exp_polar(I*pi)/a)/(3*gamma(13/6)) +
 B*sqrt(a)*e**(5/2)*x**(13/2)*gamma(13/6)*hyper((-1/2, 13/6), (19/6,), b*x**3*exp_polar(I*pi)/a)/(3*gamma(19/6
))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(5/2)*(B*x^3+A)*(b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^3 + A)*sqrt(b*x^3 + a)*x^(5/2)*e^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \left (B\,x^3+A\right )\,{\left (e\,x\right )}^{5/2}\,\sqrt {b\,x^3+a} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x^3)*(e*x)^(5/2)*(a + b*x^3)^(1/2),x)

[Out]

int((A + B*x^3)*(e*x)^(5/2)*(a + b*x^3)^(1/2), x)

________________________________________________________________________________________